copley on controls

M3 3-Axis Module CANopen

3-AXIS DIGITAL DRIVE FOR SERVO & STEPPER MOTORS

Servo Control Modes

- Profile Position-Velocity, Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- Camming, Gearing
- Position/Velocity/Torque

Stepper Control Modes

- Cyclic Synchronous Position (CSP)
- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Position (Microstepping)
- Position/Velocity/Torque (Servo Mode)
- Indexer, Point-to-Point, PVT
- Camming, Gearing

Command Interface

- CANopen
- ASCII and discrete I/O
- Stepper commands
- ±10V or PWM velocity/torque (servo mode)
- Master encoder (Gearing/Camming)

Communications

- CANopen
- RS-232

Feedback

- Digital quad A/B/X encoder
- Absolute encoders
- Sin/Cos encoders
- Digital Halls

I/O Digital

- 19 HS inputs
- 3 MOSFET outputs
- 6 CMOS HS outputs

I/O Analog

- 3 ±10V inputs
- I/O SPI

• 1 HS input

• 3 CMOS HS outputs

Dimensions: mm [in]

• 101.6 x 85.1 x 21 [4.0 x 3.35 x 0.80]

DESCRIPTION

Multinet MP3 is a 3-axis, high-performance, DC powered drive for position, velocity, and torque control of stepper and motors via CANopen. Using advanced FPGA technology, the *MP3* provides a significant reduction in the cost per node in multi-axis CANopen systems.

Each of the three axes in the *MP3* operate as *CANopen* nodes under CiA-402 for motion control devices. Supported modes include: Profile Position-Velocity, Interpolated Position Mode (PVT), and Homing.

Servo mode of steppers allows CANopen or digital PWM control of position/ velocity/torque. In microstepping mode stepper command pulses and master encoder for camming or gearing is supported.

Model	Ic	Ip	Vdc
MP3-090-10	5	10	14~90

Nineteen high-speed digital inputs with programmable functions are provided. There are six CMOS high-speed outputs. Three MOSFET outputs that are 24V compatible can power motor brakes.

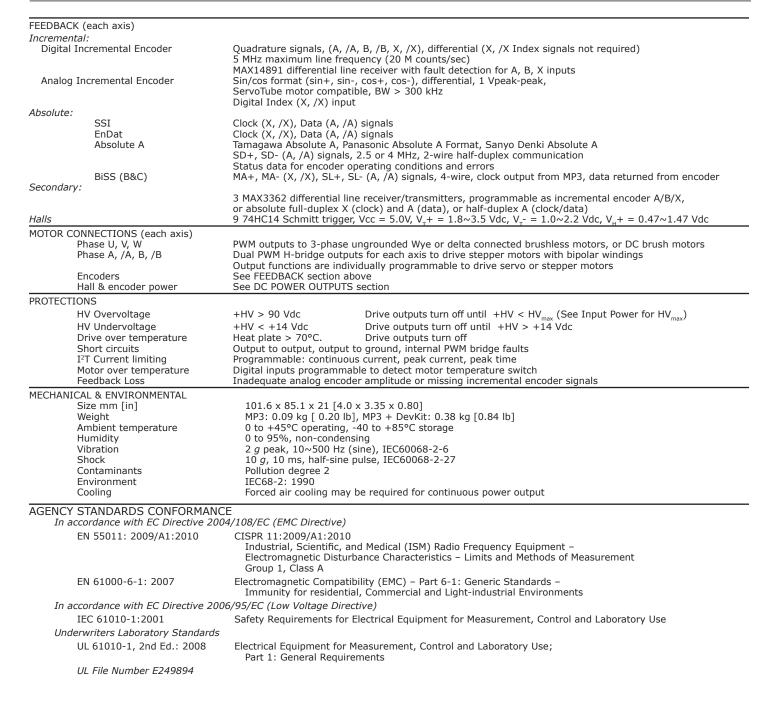
An SPI port is provided with one high-speed input and three high-speed digital outputs. If not used for SPI, the input and outputs are programmable for other functions.

An RS-232 serial port provides a connection to Copley's CME2 software for commissioning, firmware upgrading, and saving configurations to flash memory. The CANopen port is optically isolated.

Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.

GENERAL SPECIFICATIONS

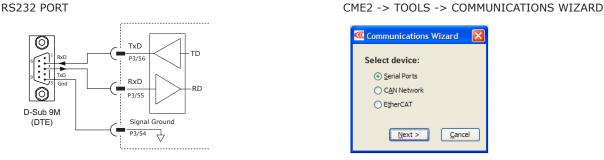
UTPUT I	POWER (each axis) Peak Current	10 (7.07) Adc (Arms-sine), ±5%
	Peak time	10 (7.07) Adc (Arms-sine), ±5% 1 Sec
	Continuous current	5 (3.53) Adc (Arms-sine) per phase (Note 1)
	Maximum Output Voltage	Vout = HV*0.97 - Rout*Iout
IPUT PC	OWER (module)	
	HVmin~HVmax	+14 to +90 Vdc Transformer-isolated
	Ipeak	30 Adc (1 sec) peak
	Icont Aux HV	15 Adc continuous (Note 1) 24 Vdc typ , 12.3 W max with all encoders @ 500 mA, 2.6 W max with no encoders
		24 Vuc typ , 12.5 W max with an encoders @ 500 mA, 2.0 W max with no encoders
WM OUT		Dual H-bridge MOSFET , 12.5 kHz center-weighted PWM, space-vector modulation
	PWM ripple frequency	25 kHz
ONTROL	L MODES SERVO	
	CANopen: Profile Position/Veloc Analog ±10 Vdc velocity/torque	ity/Torque, Interpolated Position (PVT), Homing
	Digital PWM velocity/torque	
	Digital position: CW/CCW, Pulse	e/Direction, Ouadrature A/B
		l indexer and function generator
ONTROL	L MODES STEPPER	
		ity (/Torque in servo mode), Interpolated Position (PVT), Homing
	Digital PWM velocity (/Torque ii	ue in servo mode), 12-bit resolution
		nds, CW/CCW, Pulse/Direction, Quadrature A/B
		I indexer and function generator
OMMAN	D INPUTS	
	Туре	CANopen, galvanically isolated from drive circuits
	Signals & format	CAN_H, CAN_L, CAN_GND
	Device ID Selection	Programmable, or via digital inputs
	Analog Digital	±10 Vdc, torque/velocity control, 12-bit resolution High speed inputs for PWM velocity/torque and stepper/encoder position commands
	Camming	Quad A/B digital encoder
IGITAL	CONTROL	
IOII//L	Digital Control Loops	Current, velocity, position. 100% digital loop control
	Sampling rate (time)	Current loop: 12.5 kHz (80 µs), Velocity & position loops: 2.5 kHz (400 µs) See note 2.
	Commutation	Sinusoidal, field-oriented control for stepper motors
	Modulation	Center-weighted PWM with space-vector modulation
	Bandwidths	Current loop: 2.5 kHz typical, bandwidth will vary with tuning & load inductance
	HV Compensation Minimum load inductance	Changes in bus voltage do not affect bandwidth 200 µH line-line
NALOG	INPUTS	
MALOO	Number	3
	Туре	±10 Vdc, 12-bit resolution, differential
IGITAL	INPUTS	
	Number, type	19, 74LVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = $1.1 \sim 2$ Vdc, V _T = $0.8 \sim 1.5$ Vdc, V _H + = $0.3 \sim 1.2$ Vdc
	[IN1~18]	High-speed (HS) digital, 100 ns RC filter, 10 k Ω pull-up to +3.3 Vdc, 7V tolerant
	[IN19] Halls	SPI port MISO input, 47 ns RC filter, 10 k Ω pull-up to +3.3 Vdc, 7V tolerant 9, 74HC14 Schmitt trigger, V _T + = 2.5~3.5 Vdc, V _T - = 1.3~2.2 Vdc, V _u + = ±0.7~1.5 Vdc
	Tiallo	9, 74HC14 Schmitt trigger, v_{T} = 2.3~3.5 Vdc, v_{T} = 1.3~2.2 Vdc, v_{H} = ±0.7~1.5 Vdc High-speed (HS) digital, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc, 24V tolerant
	Functions	Default functions are shown above, programmable to other functions
IGITAL	OUTPUTS	
	Number	9
	[OUT1~3]	Open-drain MOSFET with 1 k Ω pull-up with series diode to +5 Vdc
		300 mAdc max, +30 Vdc max. Functions programmable
	[OUT4~9]	External flyback diodes required for driving inductive loads SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant;
		Output current: -8 mA source @ V_{OH} = 2.4V, 6 mA sink at V_{OL} = 0.5V
	Functions	Default functions are shown above, programmable to other functions
C POWE	ER OUTPUT	
/ -	Number	3
	Ratings	+5 Vdc, 500 mA max each output, thermal and short-circuit protected
S-232 P		
	Signals	RxD, TxD, Gnd for operation as a DTE device
	Mode	Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-op or reset. Programmable to 19,200, 57,600, 115,200
	Protocol	Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200 ASCII or Binary format
	11000001	A COLL OF DIRICHY FORMAL


Notes:

1) Forced-air cooling may be required for operation at full output power on all axes.

2) Default settings for current and position loop frequencies. User programmable for other frequencies.

CME2 SOFTWARE

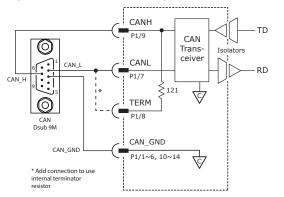

Drive setup is fast and easy using *CME 2* software. All of the operations needed to configure the drive are accessible through this powerful and intuitive program. Auto-phasing of brushless motor Hall sensors and phase wires eliminates "wire and try". Connections are made once and *CME 2* does the rest thereafter. Encoder wire swapping to establish the direction of positive motion is eliminated.

Motor data can be saved as .CCM files. Drive data is saved as .CCX files that contain all drive settings plus motor data. This eases system management as files can be cross-referenced to drives. Once a drive configuration has been completed systems can be replicated easily with the same setup and performance.

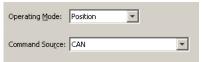
RS-232 COMMUNICATIONS

The MP3 is configured via a three-wire, full-duplex RS-232 port that operates as a DTE from 9,600 to 115,200 Baud. CME 2 software communicates with the drive over this link for commissioning and adjustments.

When operating as a stand-alone drive that takes command inputs from an external controller, CME 2 is used for configuration. When operated as a CAN node, CME 2 is used for programming before and after installation in a CAN network. The MP3 can also be controlled via CME 2 while it is in place as a CAN node. During this process, drive operation as a CAN node is suspended. When adjustments are complete, CME 2 relinquishes control of the drive and returns it to the CAN node state. Multiple drives can communicate over a single RS-232 port by daisy-chaining the master drive to other drives using CAN cables. The master drive does the RS-232 communication with the system and echoes the commands to the other drives over the CAN bus.


CANOPEN COMMUNICATIONS

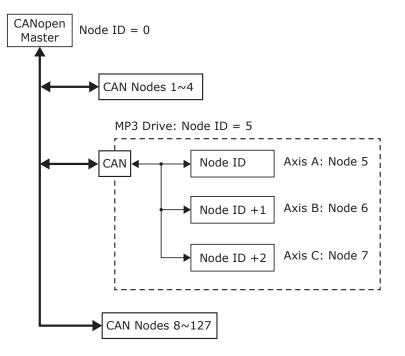
Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.


The MP3 uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on a single CAN bus. Up to seven digital inputs can be used to produce CAN Node-IDs from 1~127, or the Node-ID can be saved to flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network.

CANOPEN CONNECTIONS

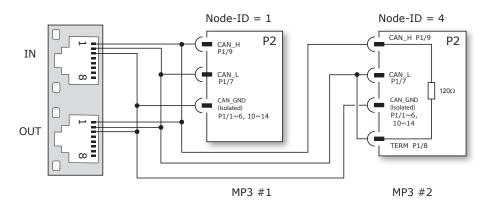
The graphic below shows connections between the MP3 and a Dsub 9M connector on a CAN card. If the MP3 is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown. The node Node-ID of the MP3 may be set by using digital inputs, or programmed into flash memory in the drive.

CME2 -> Basic Setup -> Operating Mode Options



CANOPEN DEVICE ID SWITCHES

The Node-ID of the MP3 can be set in flash memory, or read from 16-position switches via an SPI port. An SPI port circuit and switches is included in the MP3 Development Kit. Users can add this circuit to their own mounting boards. The Node ID can be set in flash memory using Copley CME2 software.


On a CAN network, the MP3 will appear as three consequtive nodes. When the "base" Node-ID is configured either via SPI or flash programming, it will address Axis A. Then, Axes B, and C will be automatically assigned Node-ID's based on the base ID. The Axis-B ID will be Axis-A ID +1. Axis-C will be Axis-A +2.

Whatever Node-ID is assigned to the MP3, a total of three IDs with consecutive values will result. In the graphic below, the base ID of the MP3 is set to 5 resulting in IDs of 5,6, and 7 for the three axes. Node-ID 0 is reserved for the CANopen Master, and the maximum Node-ID allowed is 127. This leaves ID 1~4, and 8~127 available for use by other devices on the network.

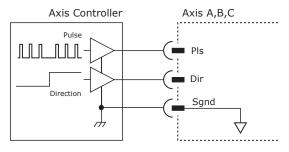
CANOPEN CONNECTIONS FOR MULTIPLE MODULES

The graphic below shows two MP3 wired to a CAN network. The lowest Node-ID allowable on a CAN network is 1 which will allocate IDs 1,2, and 3 for MP3 #1. MP3 #2 must have a minimum Node-ID equal to Node-ID#1+3 which equals 4 as shown.

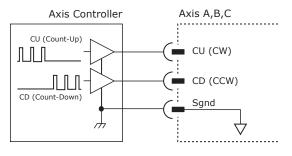
When the MP3 is the last node on the CAN bus, the internal terminator can be used by connecting it as shown.

copley of controls

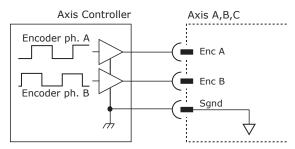
M3 3-Axis Module CANopen



DIGITAL COMMAND INPUTS


Digital commands are single-ended format and should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. The active edge (rising or falling) is programmable for the Pulse/Dir and CU/CD formats.

DIGITAL POSITION


PULSE & DIRECTION

CU/CD (PULSE UP / PULSE DOWN)

QUAD A/B ENCODER

CME2 -> Basic Setup -> Operating Mode Options Operating Mode: Position Command Source: Digital Input

HOW IT LOOKS IN CME2

HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Operating Mode Options

Increment Position on:
O <u>F</u> alling Edge
1 Output Counts

This screen shows the configuration screen for Pulse & Direction. CU/CD and Quad A/B encoder are selectable on this screen, too.

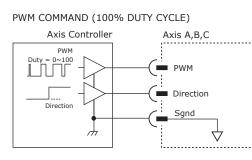
SIGNALS & PINS

The pins in the chart are on connector P2. The functions shown are the defaults. These can be programmed for other functions.

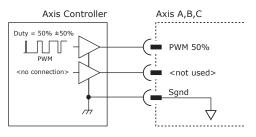
Functions		Axis A		Axis B		Axis C		
Functions		P3 Pins	Signal	P3 Pins	Signal	P3 Pins	Signal	
Enc A	Pulse	CW	27	[IN5]	33	[IN11]	39	[IN17]
Enc B	Dir	CCW	28	[IN6]	34	[IN12]	40	[IN18]

Note:

1) The functions shown for [IN5~6], [IN11~12], and [IN17~18] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.



HOW IT LOOKS IN CME2



DIGITAL COMMAND INPUTS (CONT'D)

DIGITAL TORQUE, VELOCITY

PWM COMMAND (50% DUTY CYCLE)

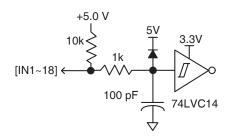
Operating Mode: Velocity							
Command Source: PWM Command							
CME2 -> Main Page-> PWM Command							
Scaling: 3750 rpm at 100% duty cycle							
Input Type: <u>5</u>0% Duty Cycle <u>1</u>00% Duty Cycle 							
Enable Deadband Deadband: % = 0 rpm							
Options:							
Invert PWM Input							
Allow 100% Output							
This series shows the E00/ Duty Cycle selection							

CME2 -> Basic Setup -> Operating Mode Options

This screen shows the 50% Duty Cycle selection. Other modes are selectable via radio buttons and pull-down menus for Operating Mode and Command Source.

SIGNALS & PINS

The pins in the chart are	on connector P2
---------------------------	-----------------


Function		Axis A		Axis	sВ	Axis C		
Fui	Function		Signal	P3 Pins	Signal	P3 Pins	Signal	
PWM	PWM 50%	27	[IN5]	33	[IN11]	39	[IN17]	
Polarity	n/a	28	[IN6]	34	[IN12]	40	[IN18]	

Note:

1) The functions shown for [IN5~6], [IN11~12], and [IN17~18] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.

DIGITAL COMMAND INPUTS

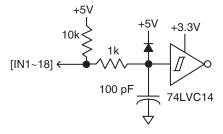
HIGH SPEED INPUTS [IN1~18] 5V tolerant

HI/LO DEFINITIONS: INPUTS

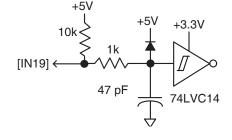
Input	State	Condition
	HI	Vin >= 1.1~2.2 Vdc
IN1~19	LO	Vin <= 0.8~1.5 Vdc
	Vhys	0.3~1.2 Vdc

INPUTS

DIGITAL INPUTS


MP3 has 19 high-speed digital inputs, all of which have programmable functions.

They are compatible with 5V logic and have 100 ns R/C filters when driven by devices with active pull-up/pull-down outputs.

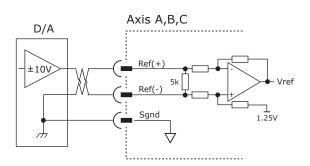

Programmable functions of the digital inputs include:

- Drive Enable
- Positive Limit switch
- Negative Limit switch
- Digital Command Inputs
- Home switch
- Drive Reset
- Motion abort

HIGH-SPEED DIGITAL INPUTS +5 VDC MAX

HIGH-SPEED DIGITAL INPUT SPI PORT MISO SIGNAL +5 VDC MAX

SIGNALS & PINS


The pins in the chart are on connector P2. The functions shown are the defaults. All of these inputs can be programmed for other functions. P2 Signal Ground pins are: 1, 2, 21, 22, 41, 42, 53, 54.

	Functions					Axis A		Axis B		s C
Functions					P3 Pins	Signal	P3 Pins	Signal	P3 Pins	Signal
Enable					23	[IN1]	29	[IN7]	35	[IN13]
	Pos Limit					[IN2]	30	[IN8]	36	[IN14]
	Neg Limit				25	[IN3]	31	[IN9]	37	[IN15]
				26	[IN4]	32	[IN10]	38	[IN16]	
Enc A	Pulse	CW	PWM	PWM 50%	27	[IN5]	33	[IN11]	39	[IN17]
Enc B	Enc B Dir CCW Polarity n/a				28	[IN6]	34	[IN12]	40	[IN18]
			SPI F	Port MISO inp	out				52	[IN19]

ANALOG INPUTS

The analog inputs have a ± 10 Vdc range. As reference inputs they can take position/velocity/torque commands from a controller.

Functions	Axis A	Axis B	Axis C	
Functions	P3 Pins	P3 Pins	P3 Pins	
Ref(+)	3	5	7	
Ref(-)	4	6	8	

DIGITAL INPUT DETAILS

HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Inputs 1-12

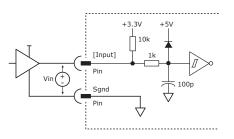
Input/O	utput				
Digital Ing	uts 1-12 Digital Inputs 13-19 Digital Outputs 1-5 Digital O	utpute 6-1			
Digital Inp		utputs o-:	9		
[IN1]	Amp Enable-LO Enables With Clear Faults	0	Axis A 🔻	0 ms	
[141]	Amp Enable-LO Enables with Clear Faults	0		0 ms	
[IN2]	Not Configured	0	Axis A 🔻	0 ms	
[IN3]	Not Configured	0	Axis A 🔻	0 ms	
[IN4]	Motor Temp-HI Disables 🔹	0	Axis A 🔻	0 ms	
[IN5]	Not Configured	0	Axis A 🔻	0 ms	
[IN6]	Not Configured	0	Axis A 🔻	0 ms	
[IN7]	Amp Enable-LO Enables With Clear Faults	0	Axis B 🔻	0 ms	
[IN8]	Not Configured	0	Axis B 🔻	0 ms	
[IN9]	Not Configured	0	Axis B 🔻	0 ms	
[IN10]	Motor Temp-HI Disables	0	Axis B 🔻	0 ms	
[maa]				0 ms	
[IN11]	Not Configured	0	Axis B 🔻	Ums	
[IN12]	Not Configured	0	Axis B 🔻	0 ms	
[IN9] [IN10] [IN11] [IN12] 	Hold position when limit switch is active				
	se Switch and LED Interface (SLI)			estore Defaults	Close
V 0	se switch and LED Interface (SLI)		R	estore perduits	Close

Notes:

The functions for all of the inputs are programmable. The functions shown above are defaults for the combinations listed below:

• [IN1] and [IN7] are the defaults for the Axis-A and Axis-B Enable functions.

• [IN2~4] and [IN8~10] are typically used for pos/neg limit switches, and Home switch.


• [IN5~6] and [IN11~12] are the digital command input defaults for position, velocity, or torque control.

DIGITAL INPUT PINS AND FUNCTIONS

	Axis A		Axis B					
Functions					P3 Pins	Signal	P3 Pins	Signal
Enable						[IN1]	29	[IN7]
	24	[IN2]	30	[IN8]				
	Nega	ative Limit	Switch		25	[IN3]	31	[IN9]
		Home Swi	tch		26	[IN4]	32	[IN10]
Enc A	Enc A Pulse CW PWM PWM 50%				27	[IN5]	33	[IN11]
Enc B	Dir	CCW	Polarity	n/a	28	[IN6]	34	[IN12]

HIGH SPEED DIGITAL INPUTS [IN1~IN12]

5V tolerant

HIGH SPEED	DIGITAL	INPUTS	[IN1~IN12]
5V tolerant			

Input	State	Condition
	HI	Vin >= 1.1~2.2 Vdc
IN1~12	LO	Vin <= 0.8~1.5 Vdc
	Vhys	0.3~1.2 Vdc

DIGITAL INPUT DETAILS

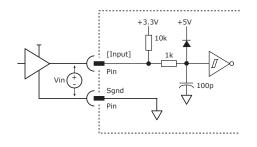
HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Inputs 13-19

Input/O	utput					
Digital Inp	uts 1-12 Digital Inputs 13-19 Digital Outputs 1-5	Digital Ou	tputs 6-	9		
[IN13]	Amp Enable-LO Enables With Clear Faults	▼	0	Axis C 🔻	0 ms	
[IN14]	Not Configured	•	0	Axis C 🔻	0 ms	
[IN15]	Not Configured	▼	0	Axis C 🔻	0 ms	
[IN16]	Motor Temp-HI Disables	•	0	Axis C 🔻	0 ms	
[IN17]	Not Configured	▼	0	Axis C 🔻	0 ms	
[IN18]	Not Configured	▼	0	Axis C 🔻	0 ms	
[IN19]	SLI MISO (Master Input Slave Output)	•	0	Axis C 🔻	0 ms	
*	Hold position when limit switch is active					
	se Switch and LED Interface (SLI)				Restore Defaults	Close

Notes:

- The functions for all of the inputs are programmable. The functions shown above are defaults for the combinations listed below:
- [IN13] is the default for the Axis-C Enable function.
- [IN14~16] are typically used for pos/neg limit switches, and Home switch.
- [IN17~18] are the digital command input defaults for position, velocity, or torque control.
- [IN19] is the MISO input when SPI is used.


DIGITAL INPUT PINS AND FUNCTIONS

Functions			Axis C			
		Function	5		P3 Pins	Signal
		Enable			35	[IN13]
	Posi	tive Limit	Switch		36	[IN14]
	Negative Limit Switch				37	[IN15]
	Home Switch				38	[IN16]
Enc A	Pulse	CW	PWM	PWM 50%	39	[IN17]
Enc B	Dir	CCW	Polarity	n/a	40	[IN18]
	SPI MISO			52	[IN19]	

HI/LO DEFINITIONS: INPUTS

Input	State	Condition	
	HI	Vin >= 1.1~2.2 Vdc	
IN13~19	LO	Vin <= 0.8~1.5 Vdc	
	Vhys	0.3~1.2 Vdc	

HIGH SPEED DIGITAL INPUTS [IN13~IN18] 5V tolerant

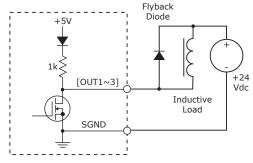
HIGH SPEED INPUT [IN19] SPI MISO 5V tolerant

DIGITAL OUTPUT DETAILS

HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Outputs 1-6

	1-12 Digital Inputs 13-19 Digital Outputs 1-5 Digital Outp	
[OUT1]	Fault-Active High Axis A Configure Custom	
[OUT2]	Fault-Active High Axis B Configure Custom 	
[OUT3]	Fault-Active High ▼ Axis C ▼ Configure Custom	
[OUT4]	Not Configured Axis A Configure Custom	
[OUT5]	Not Configured ▼ Configure Custom	
	d position when limit switch is active	

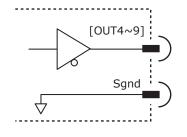

MOSFET OUTPUTS & PINS

Function	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

HI/LO DEFINITIONS: OUTPUTS 1~3

Output	State	Condition
OUT1~3	HI	MOSFET OFF
	LO	MOSFET ON

MOSFET DIGITAL OUTPUTS: INDUCTIVE LOADS


HIGH SPEED OUTPUTS & PINS

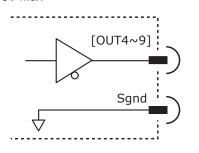
Output	P3 Pin	SPI Signals	
[OUT4]	46		
[OUT5]	47		
HI/LO DEF	I/LO DEFINITIONS:		
Output	State	Condition	

Output	State	Condition
OUT4~5	HI	Vout >= 2.2 Vdc
0014~3	LO	Vout <= 0.8 Vdc

HIGH SPEED DIGITAL OUTPUTS [OUT4~5] 74HCT125

5V max

Note: All outputs are programmable for other functions than the ones shown here.


DIGITAL OUTPUT DETAILS

HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Outputs 4-9

Input/C	utput 🖉 🖉 😰		
Digital Inp	uts 1-12 Digital Inputs 13-19 Digital Outputs 1-5 Digital Outputs 6-9		
[ουτά	Not Configured ▼ Axis A ▼ Configure Custom		
(0017	SLI MOSI (Master Output Slave Input) Axis A Configure Custom		
[ουτε	SLI CLK (Clock) Axis A		
[ουτς	SLI SS (Slave Select) Configure Custom		
*	Hold position when limit switch is active		
V	se Switch and LED Interface (SLI)	re Defaults	Close

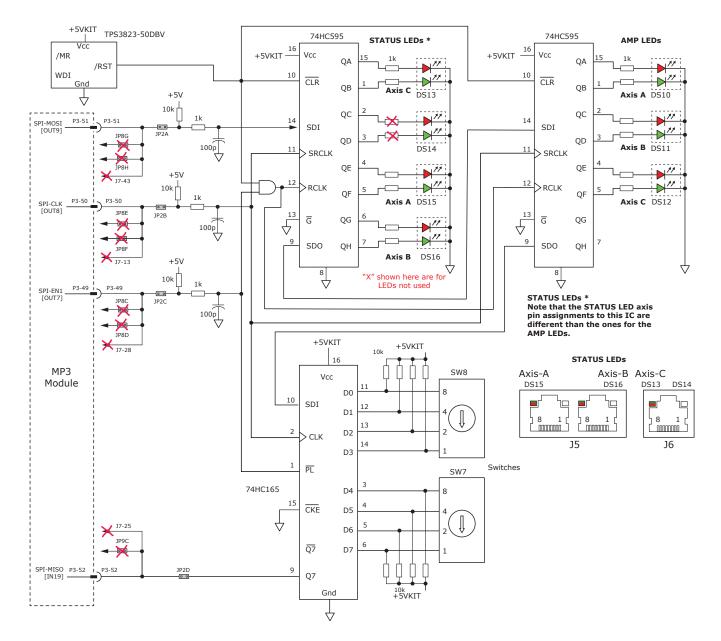
HIGH SPEED DIGITAL OUTPUTS [OUT6~9] 74HCT125 5V max

HIGH SPEED DIGITAL OUTPUTS [OUT6~9]

Output	P3 Pin	SPI Signals
[OUT6]	48	
[OUT7]	49	SPI EN1
[OUT8]	50	SPI Clock
[OUT9]	51	SPI MOSI

Note: All outputs are programmable for other functions than the ones shown here.

HI/LO DEFINITIONS: OUTPUTS


Output	State	Condition
	HI	Vout >= 2.2 Vdc
OUT6~9	LO	Vout <= 0.8 Vdc

SPI PORT

This graphic shows all of the SPI port outputs and input together. The connections shown are those used on the MP3 Development Kit as an example of the port's usage for inputs and outputs.

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
	HI	Vout >= 2.2 Vdc
[OUT7~9]	LO	Vout <= 0.8 Vdc

SIGNALS & PINS

Output	P2 Pin	SPI Signals
[OUT7]	49	SPI EN1
[OUT8]	50	SPI Clock
[OUT9]	51	SPI MOSI
[IN19]	52	SPI MISO

If these signals are not used for the SPI port , they are programmable for other functions.

FEEDBACK CONNECTIONS

Motor connections consist of: phases, Halls, encoder, thermal sensor, and brake. The phase connections carry the drive output currents that drive the motor to produce motion. The Hall signals are three digital signals that give absolute position feedback within an electrical commutation cycle of brushless motors. Encoder signals give position feedback and are used for velocity and position modes, as well as sinusoidal commutation. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. A brake can provide a fail-safe way to prevent movement of the motor when the drive is shut-down or disabled.

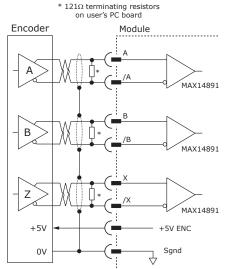
QUAD A/B INCREMENTAL ENCODER WITH FAULT PROTECTION (PRIMARY FEEDBACK ONLY)

Encoders with differential line-driver outputs provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX14891 receiver has differential inputs with fault protections for the following conditions:

Short-circuits line-line: This produces a near-zero voltage between A & /A, B & /B, and X & /X which is below the differential fault threshold.

Open-circuit condition: A 121Ω terminator resistor will pull the inputs together if either side (or both) is open.

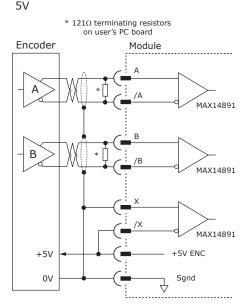
This will produce the same fault condition as a short-circuit across the inputs.


Low differential voltage detection: This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV.

 $\pm 25kV$ ESD protection: The MAX14891 has protection against high-voltage discharges using the Human Body Model.

Extended common-mode range: A fault occurs if a single input voltage is outside of the range of -18.5V to +18.5V

If encoder fault detection is selected (CME2 main page, Configure Faults block, Feedback Error) and an encoder with no index is used, then the X and /X inputs must be wired as shown below to prevent the unused index input from generating an error for *low differential voltage detection*.



	Motor Encoder:	Primary Incremental	•
--	----------------	---------------------	----------

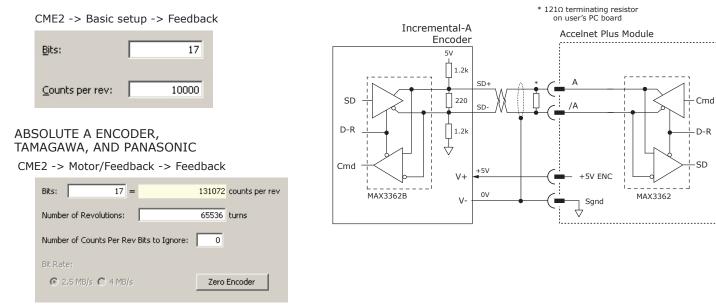
PRIMARY FEEDBACK CONNECTIONS The pins in the chart are on connector P4

Functions	Axis A	Axis B	Axis C
Functions	Pins	Pins	Pins
Enc A	5	19	33
Enc /A	7	21	35
Enc B	9	23	37
Enc /B	11	25	39
Enc X	13	27	41
Enc /X	15	29	43
+5V Out	17	31	45
Signal Gnd	18	32	46

A/B CONNECTIONS (NO INDEX)

SECONDARY FEEDBACK CONNECTIONS The pins in the chart are on connector P4

Functions	Axis A	Axis B	Axis C		
Functions	Pins	Pins	Pins		
Sec Enc A	6	20	34		
Sec Enc /A	8	22	36		
Sec Enc B	10	24	38		
Sec Enc /B	12	26	40		
Sec Enc X	14	28	42		
Sec Enc /X	16	30	44		
+5 ENC	17	31	45		
Signal Gnd	1~4,18,32,46,56				



FEEDBACK CONNECTIONS

PANASONIC INCREMENTAL A ENCODER

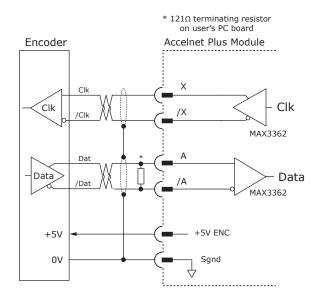
This is a "wire-saving" incremental encoder that sends serial data on a two-wire interface in the same fashion as an absolute encoder.

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The Accelnet drive provides a train of clock signals in differential format (Clk, /Clk) to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. Data from the encoder in differential format (Dat, /Dat) MSB first. Binary or Gray encoding is selectable. When the LSB goes high and a dwell time has elapsed, data is ready to be read again.

PRIMARY FEEDBACK CONNECTIONS

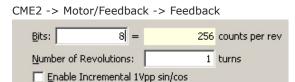
The pins in the chart are on connector P4


Encoder	Drive	Axis A	Axis B	Axis C
LIICOdei	Drive	Pins	Pins	Pins
Enc S	Enc A	5	19	33
Enc /S	Enc /A	7	21	35
Enc X	Enc X	13	27	41
Enc /X	Enc /X	15	29	43
+5V Out		17	31	45
Signal Gnd		1~4	,18,32,4	6,56

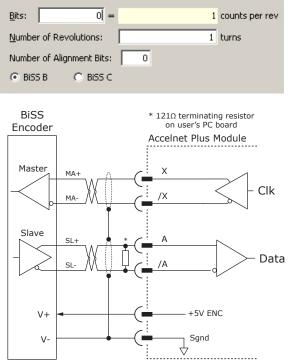
SECONDARY FEEDBACK CONNECTIONS The pins in the chart are on connector P4

Functions	Drive	Axis A	Axis B	Axis C
Functions	Drive	Pins	Pins	Pins
Sec Enc S	Sec Enc A	6	20	34
Sec Enc /S	Sec Enc /A	8	22	36
Sec Enc X	Sec Enc X	14	28	42
Sec Enc /X	Sec Enc /X	16	30	44
+5 ENC		17	31	45
Signal Gnd		1~4,18,32,46,56		6,56

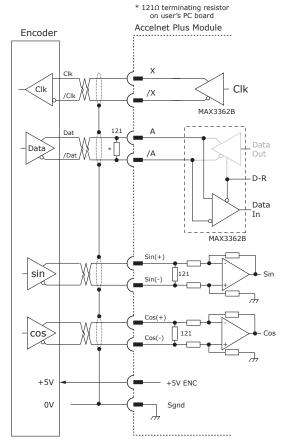
Motor Encoder	counts per rev
1	number of Encoder Bits
Binary	C Gray



FEEDBACK CONNECTIONS


ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals for synchronous digital, bidirectional data transfer. It also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable Use of sin/cos incremental signals is optional in the EnDat specification.


BISS (B & C) ABSOLUTE ENCODER

CME2 -> Motor/Feedback -> Feedback

PRIMARY FEEDBACK CONNECTIONS The pins in the chart are on connector P4

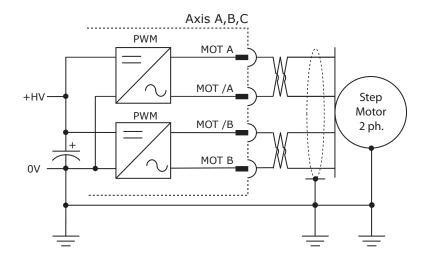
Freedor	Dita	Axis A	Axis B	Axis C
Encoder	Drive	Pins	Pins	Pins
Enc S	Enc A	5	19	33
Enc /S	Enc /A	7	21	35
Enc X	Enc X	13	27	41
Enc /X	Enc /X	15	29	43
+5V Out		17	31	45
Signal Gnd		1~4	,18,32,4	6,56

SIN/COS FEEDBACK CONNECTIONS The Sin/Cos pins in this chart are on connector P3

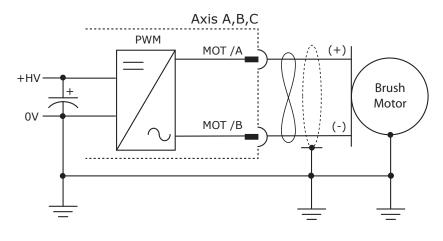
Functions	Drive	Axis A	Axis B	Axis C
Functions	Drive	Pins	Pins	Pins
Enc Sin(+)	Enc Sin(+)	9	13	17
Enc Sin(-)	Enc Sin(-)	10	14	18
Enc Cos(+)	Enc Cos(+)	11	15	19
Enc Cos(-)	Enc Cos(-)	12	16	20
+5 ENC (on P4)		17	31	45
Signal Gnd (on P4)		1~4	,18,32,4	6,56

SECONDARY FEEDBACK CONNECTIONS The pins in the chart are on connector P4

Functions	Drive	Axis A	Axis B	Axis C
Functions	Drive	Pins	Pins	Pins
Sec Enc S	Sec Enc A	6	20	34
Sec Enc /S	Sec Enc /A	8	22	36
Sec Enc X	Sec Enc X	14	28	42
Sec Enc /X	Sec Enc /X	16	30	44
+5 ENC		17	31	45
Signal Gnd		1~4	,18,32,4	6,56



MOTOR CONNECTIONS


STEPPER MOTORS

The drive outputs are two H-bridge PWM inverters that convert the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

BRUSH MOTORS

The drive outputs are an H-bridge PWM inverter that convert the DC bus voltage (+HV) into DC voltage waveforms that drive the motor (+) & (-) terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Motor Options

Motor Options

Motor Family: C Brushless C Brush © Stepper

Motor Type: Rotary C Linear

SIGNALS & PINS

The pins in the chart are on connector P1

Quitaut	Motor	Axis A	Axis B	Axis C
Output	Motor	Pins	Pins	Pins
Mot A	А	21,22	37,38	53,54
Mot /A	/A	23,24	39,40	55,56
Mot B	В	29,30	45,46	61,62
Mot /B	/B	31,32	47,48	63,64
+HV	1,2,3,4,5,6			
HV COM	11,12,13,14,15,16			
+AuxHV	7			

HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Motor Options Motor Options

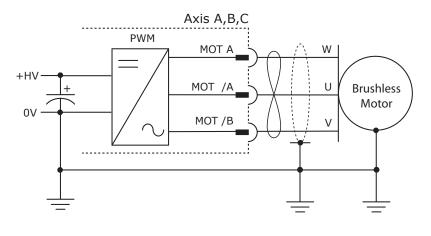
notor optionio

Motor Family: C Brushless	• Brush	C Stepper
Motor Type:	O Linear	

SIGNALS & PINS

The pins in the chart are on connector P1

Quitaut	Motor	Axis A	Axis B	Axis C	
Output	MOLOI	Pins	Pins	Pins	
Mot A	n/c				
Mot /A	(+)	23,24	39,40	55,56	
Mot /B	(-)	31,32	47,48	63,64	
+HV	1,2,3,4,5,6				
0V	11,12,13,14,15,16				
+AuxHV		7			



MOTOR CONNECTIONS

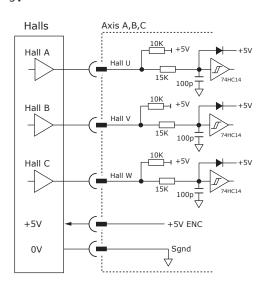
BRUSHLESS MOTORS

The drive outputs are a 3-phase PWM inverter that converts the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor U-V-W terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options

Motor Options

Motor Family: O Brushless O Brush O Stepper

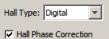

SIGNALS & PINS The pins in the chart are on connector P1

Output	Motor	Axis A	Axis B	Axis C
Output	MOLOI	Pins	Pins	Pins
Mot A	W	21,22	37,38	53,54
Mot /A	U	23,24	39,40	55,56
Mot B	No Connection			
Mot /B	V 31,32 47,48 63,64			
+HV	1,2,3,4,5,6			
HV COM	11,12,13,14,15,16			
+AuxHV	7			

DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the servo drive has switched to sinusoidal commutation.

HALL INPUTS

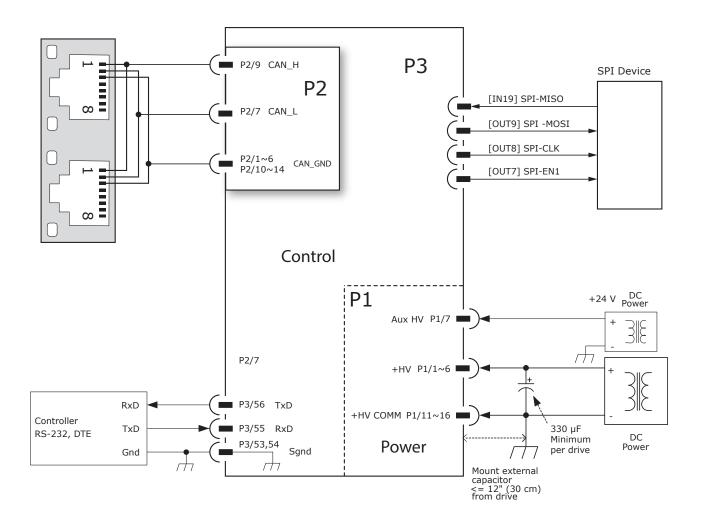


SIGNALS & PINS The pins in the chart are on connector P4

Functions	Axis A	Axis B	Axis C
Functions	Pins	Pins	Pins
Hall U	47	50	53
Hall V	48	51	54
Hall W	49	52	55

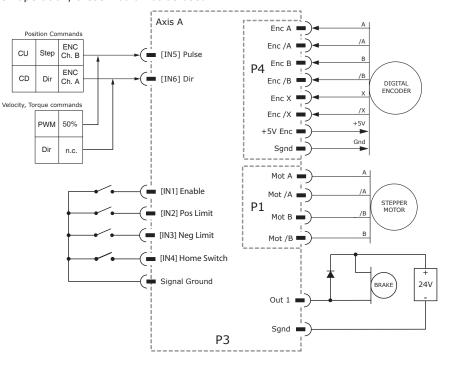
HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Feedback Options

Feedback Options



Note: Hall phase correction is optional

COMMON CONNECTIONS FOR ALL AXES



TYPICAL CONNECTIONS

Here is an example using a stepper motor with encoder feedback, driving a linear stage with positive and negative limit switches, and a home switch. Position commands are shown as digital inputs. For CANopen operation, these would not be used.

Axis A is shown as an example. The tables below show the pins for the same-named signals for axes B, C, and D.

P3: INPUT SIGNALS & PINS

Functions			Axi	s A	Axi	is B	Axi	s C		
	Functions			Pins	Signal	Pins	Signal	Pins	Signal	
	Enable			23	[IN1]	29	[IN7]	35	[IN13]	
	Positive Limit Switch			24	[IN2]	30	[IN8]	36	[IN14]	
	Negative Limit Switch			24	[IN3]	31	[IN9]	37	[IN15]	
	Home Switch		26	[IN4]	32	[IN10]	38	[IN16]		
Enc A	Pulse	CW	PWM	PWM 50%	27	[IN5]	33	[IN11]	39	[IN17]
Enc B	Dir	CCW	Polarity	n/a	28	[IN6]	34	[IN12]	40	[IN18]

Notes:

1) Inputs functions shown for [IN1], [IN7], [IN13] are the default functions. These inputs are programmable if not used for these functions.

2) The functions shown for [IN5~6], [IN11~12], [IN17~18] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.

3) The functions shown for [IN2~4], [IN8~10], [IN14~16] are typical inputs. These inputs are programmable if not used for these functions.

P4: ENCODER SIGNALS & PINS

Functions	Axis A	Axis B	Axis C
Functions	Pins	Pins	Pins
Enc A	5	19	33
Enc /A	7	21	35
Enc B	9	23	37
Enc /B	11	25	39
Enc X	13	27	41
Enc /X	15	29	43
+5 Vout	17	31	45
Sgnd	18	32	46

P3: MOSFET OUTPUTS & PINS

Output	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

These are open-drain MOSFETs with 1 k Ω pull-up resistors in series with a diode to +5 Vdc. They can sink up to 300 mAdc from external loads operating from power supplies to +30 Vdc. The outputs are typically configured as drive fault and motor brake. Additional functions are programmable. As a drive fault output, the active level is programmable to be HI or LO when a fault occurs. As a brake output, it is programmable to be either HI or LO to release a motor brake when the drive is enabled. When driving inductive loads such as a relay, an external fly-back diode is required. A diode in the output is for driving PLC inputs that are opto-isolated and connected to +24 Vdc. The diode prevents conduction from +24 Vdc through the 1 k Ω resistor to +5 Vdc in the drive. This could turn the PLC input on, giving a false indication of the drive output state.

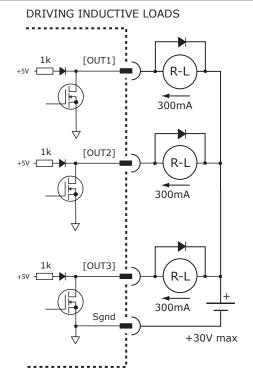
P3: MOSFET OUTPUTS & PINS

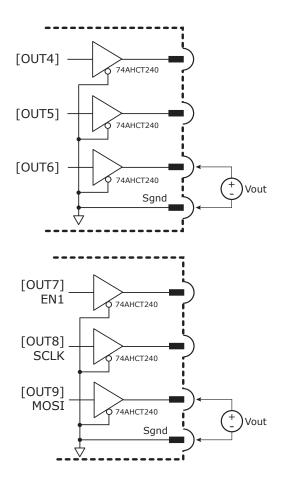
Output	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

HIGH SPEED OUTPUTS

Digital outputs [OUT4~6] are HI-speed CMOS drivers.

P3: SPI PORT OUTPUTS & PINS

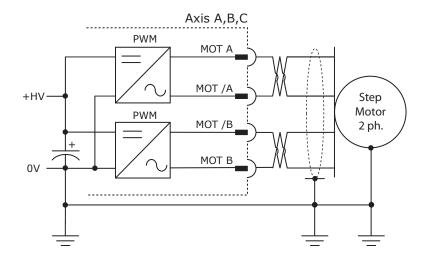

Output	P3 Pin
[OUT4]	46
[OUT5]	47
[OUT6]	48


SPI PORT OUTPUTS

Digital outputs [OUT7 \sim 9] are CMOS drivers used for the SPI port. Programmable for other functions if not used for SPI port.

P3: SPI PORT OUTPUTS & PINS

Output	P3 Pin
[OUT7]	49
[OUT8]	50
[OUT9]	51



MOTOR CONNECTIONS

STEPPER MOTORS

The drive outputs are two H-bridge PWM inverters that convert the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options

Motor Options

○ Brushless ○ Brush ⊙ Stepper

Motor Type: Rotary C Linear

P1: STEPPER OUTPUTS & PINS

Output	Axis A	Axis B	Axis C
	Pins	Pins	Pins
Mot A	21,22	37,38	53,54
Mot /A	23,24	39,40	55,56
Mot B	29,30	45,46	61,62
Mot /B	31,32	47,48	63,64

BRUSH MOTORS

The drive outputs are an H-bridge PWM inverter that convert the DC bus voltage (+HV) into DC voltage waveforms that drive the motor (+) & (-) terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Motor Options
Motor Options

Motor Family:

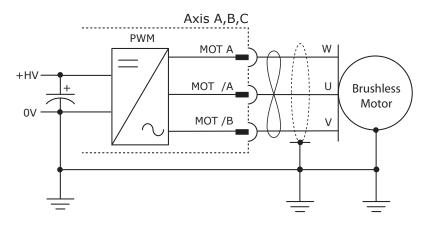
C Brushless 📀 Brush C Stepper

Motor Type:

Rotary C Linear

P1: BRUSH OUTPUTS & PINS

Output	Axis A	Axis B	Axis C	
Output	Pins	Pins	Pins	
Mot /A	23,24	39,40	55,56	
Mot /B	31,32	47,48	63,64	



MOTOR CONNECTIONS

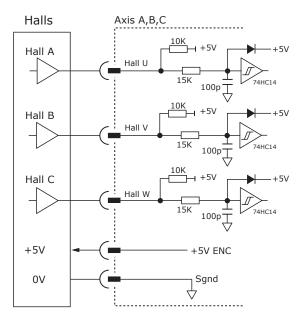
BRUSHLESS MOTORS

The drive outputs are a 3-phase PWM inverter that converts the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor U-V-W terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options

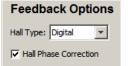
Motor Options

P1: BRUSHLESS OUTPUTS & PINS


Output	Motor	Axis A	Axis B	Axis C		
	MOLOI	Pins	Pins	Pins		
Mot A	W	21,22	37,38	53,54		
Mot /A	U	23,24	39,40	55,56		
Mot B	Not used					
Mot /B	V	31,32	47,48	63,64		

DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the servo drive has switched to sinusoidal commutation.

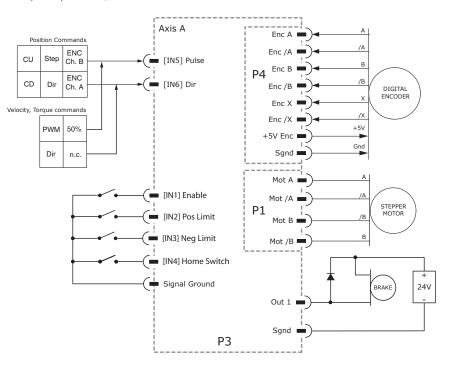


HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Feedback Options

Note: Hall phase correction is optional

P4: HALL INPUTS & PINS


Input	Axis A	Axis B	Axis C
Input	Pins	Pins	Pins
Hall U	47	50	53
Hall V	IV 48 51		54
Hall W	49	52	55

TYPICAL CONNECTIONS

Here is an example using a stepper motor with encoder feedback, driving a linear stage with positive and negative limit switches, and a home switch. Position commands are shown as digital inputs. For CANopen operation, these would not be used.

Axis A is shown as an example. The tables below show the pins for the same-named signals for axes B, C, and D.

P3: INPUT SIGNALS & PINS

	0.00	Axi	s A	Axi	s B	Axis C				
Functions					Pins	Signal	Pins	Signal	Pins	Signal
Enable					23	[IN1]	23	[IN7]	35	[IN13]
Positive Limit Switch					24	[IN2]	24	[IN8]	36	[IN14]
	Nega	ative Lin	nit Switch		24	[IN3]	24	[IN9]	37	[IN15]
		Home S	witch		26	[IN4]	26	[IN10]	38	[IN16]
Enc A	Pulse	CW	PWM	PWM 50%	27	[IN5]	27	[IN11]	39	[IN17]
Enc B	Dir	CCW	Polarity	n/a	28	[IN6]	28	[IN12]	40	[IN18]

Notes:

1) Inputs functions shown for [IN1], [IN7], [IN13], and [IN19] are the default functions. These inputs are programmable if not used for these functions.

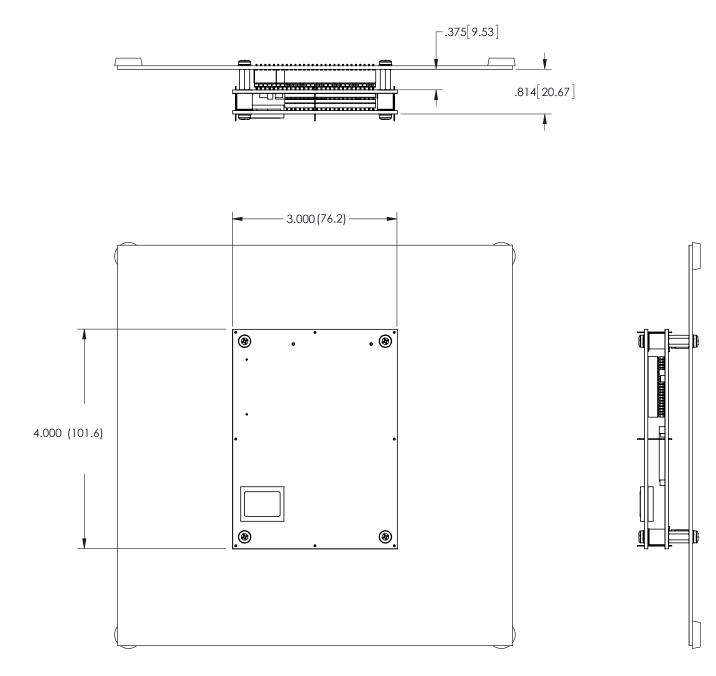
2) The functions shown for [IN5~6], [IN11~12], [IN17~18] and [IN23~24] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.

3) The functions shown for [IN2~4] are typical inputs. These inputs are programmable if not used for these functions.

P4: ENCODER SIGNALS & PINS

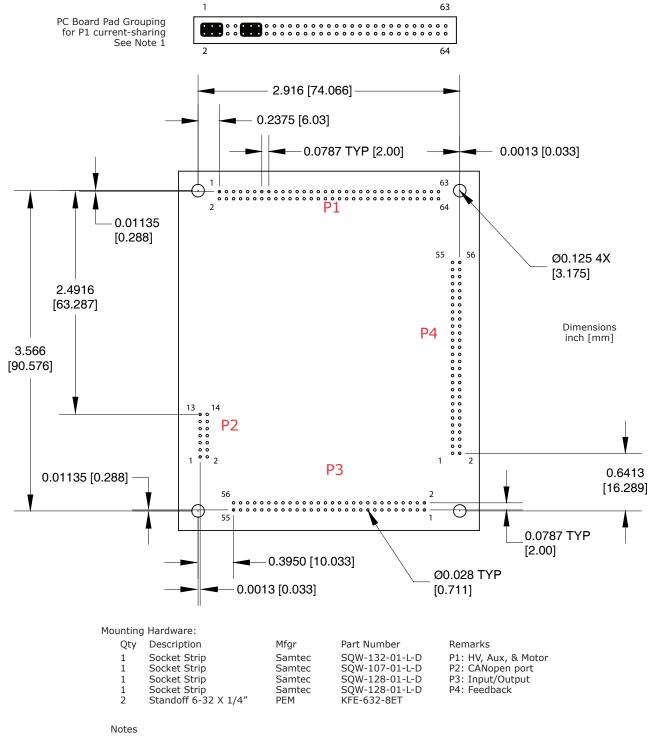
Functions	Axis A	Axis B	Axis C
FUNCTIONS	Pins	Pins	Pins
Enc A	5	19	33
Enc /A	7	21	35
Enc B	9	23	37
Enc /B	11	25	39
Enc X	13	27	41
Enc /X	15	29	43
+5 Vout	17	31	45
Sgnd	18	32	46

P3: MOSFET OUTPUTS & PINS


Output	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

MODULE DIMENSIONS

Units in inch (mm)



PRINTED CIRCUIT BOARD FOOTPRINT

Dimensions are inch (mm)

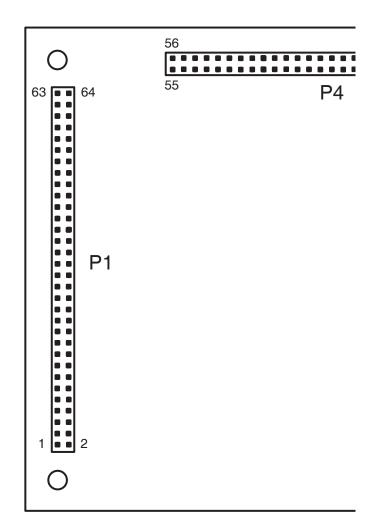
TOP VIEW Viewed from above looking down on the connectors or PC board footprint to which the module is mounted

1. P1 signals of the same name must be connected for current-sharing (see graphic above).

2. To determine copper width and thickness for P1 signals refer to specification IPC-2221.

(Association Connecting Electronic Industries, http://www.ipc.org)

MOUNTING PC BOARD CONNECTORS & SIGNALS

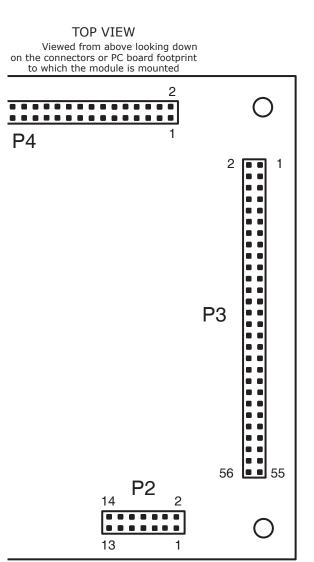

P1 POWER

Mounting board connector: Samtec SQW-132-01-L-D

Axis	Signal	Pin		Signal	Axis	
	Mot /B	63	64	Mot /B	Avia C	
Axis-C	Mot B	61	62	Mot B	Axis-C	
Ne		59	60	Ne	· 	
No con	57	58	No conr	lections		
Axis-C	Mot /A	55	56	Mot /A	Axis-C	
AXIS-C	Mot A	53	54	Mot A	AXIS-C	
No con	nections	51	52	No conr	actions	
	liections	49	50		lections	
Axis-B	Mot /B	47	48	Mot /B	Axis-B	
AXIS-D	Mot B	45	46	Mot B	AXIS-D	
No con	noctions	43	44	No conr	actions	
	nections	41	42	No conr	lections	
Axis-B	Mot /A	39	40	Mot /A	Axis-B	
AXIS-D	Mot A	37	38	Mot A	AXIS-D	
No con	nections	35	36	No connections		
	TIECTIONS	33	34			
Axis-A	Mot /B	31	32	Mot /B	Axis-A	
AXIS-A	Mot B	29	30	Mot B	AXIS-A	
No con	nections	27	28	No connections		
	liections	25	26	No connections		
Axis-A	Mot /A	23	24	Mot /A	Axis-A	
AXIS-A	Mot A	21	22	Mot A	AXIS-A	
No con	nections	19	20	No conr	ections	
	nections	17	18		lections	
		15	16			
HV	СОМ	13	14	HV C	СОМ	
		11	12			
N	.C.	9	10	N.	С.	
HV	aux	7	8	N.	С.	
		5	6			
+	HV	3	4	+HV		
		1	2			

TOP VIEW

Viewed from above looking down on the connectors or PC board footprint to which the module is mounted


CONNECTOR NAMING (P1, P2, ETC) APPLIES TO THE MP3 MODULE AND NOT TO PC BOARD MOUNTED SOCKETS

MOUNTING PC BOARD CONNECTORS & SIGNALS

P3 INPUT/OUTPUT

Mounting board connector: Samtec SQW-128-01-L-D

	Outputs [OUT1~OUT9]							
	P2 CAN POI	RT						
	Signal	Pi	in					
	CAN_GND	2						
	CAN_GND	4						
	CAN_GND	6						
	CAN_GND	8						
	CAN_GND	10						
board connector	CAN_GND	12						

Mounting board connector: Samtec SQW-107-01-L-D

Samtec SQW-128-01-L-D								
Signal	P	in	Signal					
Signal Gnd	2	1	Signal Gnd					
Axis-A Ref(-)	4	3	Axis-A Ref(+)					
Axis-B Ref(-)	6	5	Axis-B Ref(+)					
Axis-C Ref(-)	8	7	Axis-C Ref(+)					
Axis-A Sin(-)	10	9	Axis-A Sin(+)					
Axis-A Cos(-)	12	11	Axis-A Cos(+)					
Axis-B Sin(-)	14	13	Axis-B Sin(+)					
Axis-B Cos(-)	16	15	Axis-B Cos(+)					
Axis-C Sin(-)	18	17	Axis-C Sin(+)					
Axis-C Cos(-)	20	19	Axis-C Cos(+)					
Signal Gnd	22	21	Signal Gnd					
HS [IN2]	24	23	[IN1] HS Axis-A Enable					
HS [IN4]	26	25	[IN3] HS					
Axis-A Dir HS [IN6]	28	27	[IN5] HS Axis-A Pulse					
HS [IN8]	30	29	[IN7] HS Axis-B Enable					
HS [IN10]	32	31	[IN9] HS					
Axis-B Dir HS [IN12]	34	33	[IN11] HS Axis-B Pulse					
HS [IN14]	36	35	[IN13] HS Axis-C Enable					
HS [IN16]	38	37	[IN15] HS					
Axis-C Dir HS [IN18]	40	39	[IN17] HS Axis-C Pulse					
Signal Gnd	42	41	Signal Gnd					
MOSFET [OUT2]	44	43	[OUT1] MOSFET					
HS [OUT4]	46	45	[OUT3] MOSFET					
HS [OUT6]	48	47	[OUT5] HS					
SPI-CLK HS [OUT8]	50	49	[OUT7] HS SPI-EN1					
SPI-MISO [IN19]	52	51	[OUT9] HS SPI-MOSI					
Signal Gnd	54	53	Signal Gnd					
RS-232 TxD	56	55	RS-232 RxD					

Signal names in this chart are default settings for brushless motors with Halls, position mode, and command source from digital inputs. Digital inputs [IN1~IN19] are programmable for other functions. Outputs [OUT1~OUT9] are programmable for other functions.

Signal

CAN GND

CAN_GND

CAN GND

CAN_L

CAN_GND	10	9	CAN_H
CAN_GND	12	11	CAN_GND
CAN_GND	14	13	CAN_GND

CONNECTOR NAMING

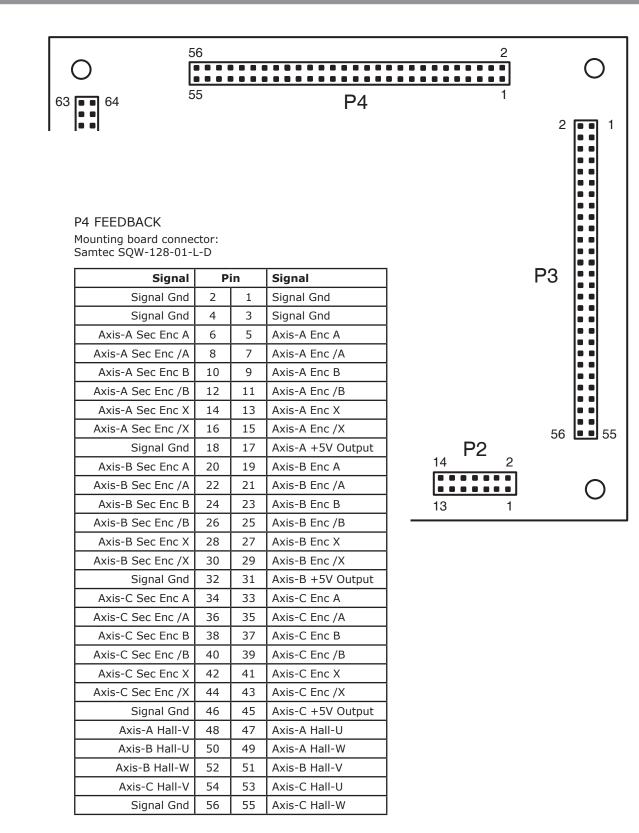
(P1, P2, ETC) APPLIES

AND NOT TO PC BOARD MOUNTED SOCKETS

TO THE MP3 MODULE

1

3


5

7

MOUNTING PC BOARD CONNECTORS & SIGNALS

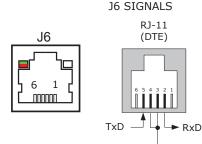


DEVELOPMENT KIT

DESCRIPTION

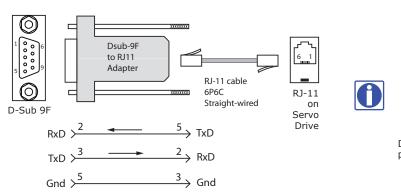
The Development Kit provides mounting and connectivity for one MP3 drive. Solderless jumpers ease configuration of inputs and outputs to support their programmable functions. Switches can be jumpered to connect to digital inputs $1 \sim 19$ so that these can be toggled to simulate equipment operation. LED's provide status indication for the digital outputs, encoder A/B/X/S signals, and Hall signals. Test points are provided for these signals, too, making it easy to monitor these with an oscilloscope.

Dual CANopen connectors make daisy-chain connections possible so that other CANopen devices such as Copley's Accelnet Plus or Xenus Plus CANopen drives can easily be connected. Rotary switches are provided to set the CANopen slave Node-ID (address).



RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME 2TM software communicates with the drive over this link and is then used for complete drive setup. The CANopen Node-ID that is set by the rotary switch can be monitored, and a Node-ID offset programmed as well.


The RS-232 connector, J6, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adaptor to interface this cable with a 9-pin RS-232 port on a computer.

The LED on J6 is for the CANopen network status of Axis C and is not associated with the RS-232 port function.

SER-CK SERIAL CABLE KIT

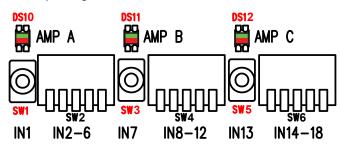
The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector J8 on the Development Kit. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the DevKit. The connections are shown in the diagram below.

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an MP3 Development Kit!

DEVELOPMENT KIT INDICATORS (LEDS)

The AMP status LEDs DS10~12 at switches SW1, 7, and 13 show the operational state of each axis of the MP3. The STATUS LEDs on J5~J6 show the state of the CANopen NMT (Network Management) state-machines of each axis in the drive. Details on the NMT state-machine can be found in the CANopen Programmers Manual, §3.1: http://www.copleycontrols.com/Motion/ pdf/CANopenProgrammersManual.pdf

AMP LEDS


Three bi-color LEDs show the states of each axis of the MP3 by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

- Green/Solid: Drive OK and enabled. Will run in response to reference inputs or CANopen commands.
- Green/Slow-Blinking: Drive OK but NOT-enabled. Will change to Green/Solid when enabled.
- Positive or Negative limit switch active. Drive will only move in direction not inhibited by limit switch. • Green/Fast-Blinking:
- Transient fault condition. Drive will resume operation when fault is removed. • Red/Solid:
- Red/Blinking: Latching fault. Operation will not resume until drive is Reset.

Drive Fault conditions. Faults are programmable to be either transient or latching:

- Over or under-voltage
- Motor over-temperature
- Encoder +5 Vdc fault
- Short-circuits from output to ground

- Drive over-temperature
- Internal short circuits
- Short-circuits from output to output

STATUS LEDS

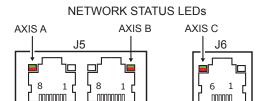
Three bi-color LEDs on J9 & J4 give the state of the NMT state-machine of each axis by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

- RUN (GREEN) • Off
- Blinking
- Single-flash
 - Stopped Operational

Init

No error

Pre-operational


- On
- ERROR (RED)
- Off
- Blinking
- Single Flash
- Double Flash
- Triple Flash
- On
- Error Control Event (guard or heartbeat event) has occurred

- Sync message not received within the configured period

Invalid configuration, general configuration error

Bus Off, the CAN master is bus off

Warning limit reached

Note: Red & green led on-times do not overlap. LED color may be red, green, off, or flashing of either color.

DEVELOPMENT KIT CANOPEN NODE ID (ADDRESS)

On a CANopen network, each device must have unique, non-zero Node-ID. In the MP3 DevKit, this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Node-ID of the drive's Axis A from 0x01~0xFF (1~255 decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Node-ID 107 (0x6B):

- 1) Find the highest number under SW21 that is less than 107 and set SW21 to the hex value in the same row: 96 < 107 and 112 > 107, so SW21 = 96 = Hex 6
- 2) Subtract 96 from the desired Node-ID to get the decimal value of switch SW22 and set SW22 to the Hex value in the same row: SW22 = (107 - 96) = 11 = Hex B
- 3) This example will produce the following CAN addresses for the MP3: Axis A = 107 (0x6B), Axis B = 108 (0x6C), Axis C = 109 (0x6D), Axis D = 110 (0x6E)

SW7	SW8
2 3 4 5 0 	2 ³⁴⁵ 0 F E C O S C C C C S C C S C C S C S C S C S

Decimal values

HFX

0

1

2

3

4

5

6

7

8

9

А

В

С

D

Е

F

SW2

0

16

32

48

64

80

96

112

128

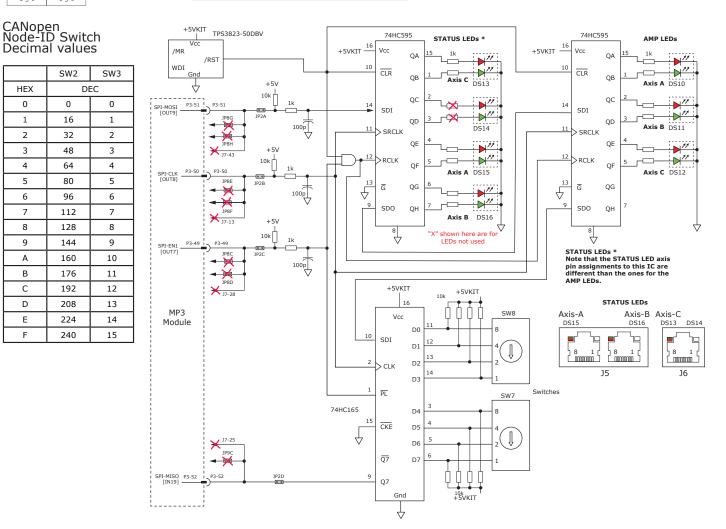
144

160

176

192

208


224

240

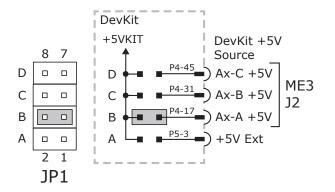
DEC

CME2 -> Input/Output -> Digital Outputs

CANopen NODE-ID (ADDRESS) SWITCH CONNECTIONS

This graphic shows the connections to the CANopen Node-ID switches and to the status LEDs for the MP3 and CANopen. The switches are read once after the drive is reset, or powered-on. When changing the settings of the switches, be sure to either reset the drive, or to power it off-on. Outputs [OUT7,8,9] and input [IN19] operate as an SPI (Switch & LED Interface) port which reads the settings on the CANopen Node-ID switches, and controls the LEDs on the serial and CANopen port con-nectors. The jumpers marked with red "X" should be removed so that SW18, or external connections to the signals do not interfere with the operation of the SPI port.

CME2 -> Amplifier -> Network Configuration


DEVELOPMENT KIT+5V POWER

The encoder +5VENC power on the feedback connectors J5~J7 is connected directly to the Ax-A, Ax-B, and Ax-C power outputs from the MP3.

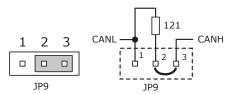
The SPI port components on the DevKit that drive the LEDs and read the Node-ID (address) switches connects to the signal +5VKIT. And the +5VKIT connects to a jumper on JP1 that selects a source of the +5V power.

This can be powered from either the Ax-A, Ax-B, and Ax-C +5V power from the MP3, or from an external +5V power supply that connects to P5-3. The default "A" position (on JP1 pins $1\sim2$) selects the external +5V power source for +5VKIT.

The default "A" position (on JP1 pins 1~2) selects the external +5V power source for +5VKIT. Moving the jumper to the B, C, or D positions (pins 3~4, 5~6, 7~8) selects the axis +5V from the MP3 as the power source for the +5VKIT. As noted below, only one jumper should be used to select the source of power for +5VKIT.

IMPORTANT: ONLY ONE SHORTING PLUG CAN BE USED ON JP1

USE OF MORE THAN ONE PLUG WILL DAMAGE 5V POWER SUPPLIES IN THE MP3

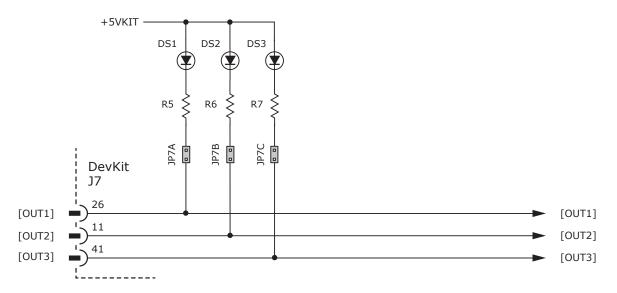

THE POSITION OF THE JUMPER AT JP1-B IS THE DEFAULT THIS WILL POWER THE ON-BOARD CIRCUITS FROM AN ENCODER +5V OUTPUT

DEVELOPMENT KIT CAN INPUT TERMINATOR

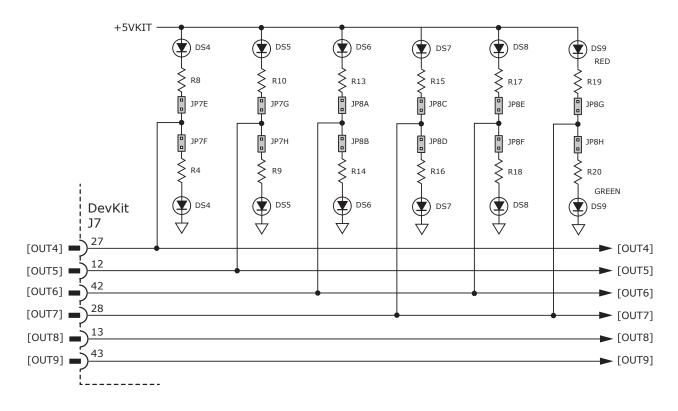
Jumper JP9 is for a 121 Ω terminator resistor for the CAN buss signals on J5. When connecting pins 1 & 2, the terminator is not active and the CAN inputs are open-circuit.

When connecting pins 2 & 3, the terminator is active and provides the 121 Ω impedance that is recommended for terminating CAN bus cables.

If the MP3 DevKit is on a CAN bus with other devices, then JP9 would only be used to activate the terminator if it is the last device on the physical end of the network. Otherwise the terminator should not be activated. If the MP3 DevKit is used alone, then the terminator should be activated.



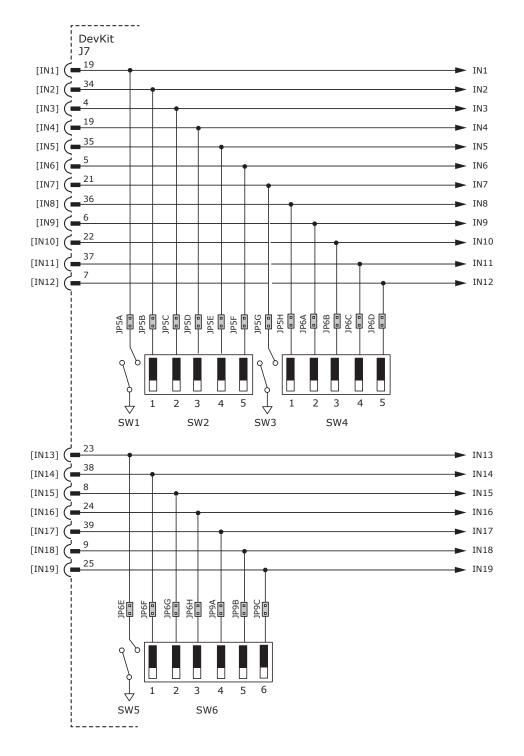
DEVELOPMENT KIT OUTPUTS


MOSFET OUTPUTS

There are three MOSFET outputs that can drive controller logic inputs or relays. If relays are driven, then flyback diodes must be connected across their terminals to clamp overvoltages that occur when the inductance of the relay coil is suddenly turned off. LED indicators connected to the outputs will be ON when the output is MOSFET is ON and the output voltage will be near 0V. Outputs 1,2, & 3 are MOSFET types that sink current when ON, and appear as open-circuit when OFF. When these outputs are ON a red LED is turned on. When the outputs are OFF, the red LED is off. The green LED is not used on these outputs.

LOGIC OUTPUTS

Outputs $4 \sim 9$ are CMOS types that pull up to 5V or down to ground. When these outputs go high it turns on the green LED. When they are low, the red LED is turned on.


DEVELOPMENT KIT LOGIC INPUTS & SWITCHES

LOGIC INPUTS & SWITCHES

The Development Kit has jumpers that can connect the MP3 digital inputs to switches on the kit, or to the Control connector J7.

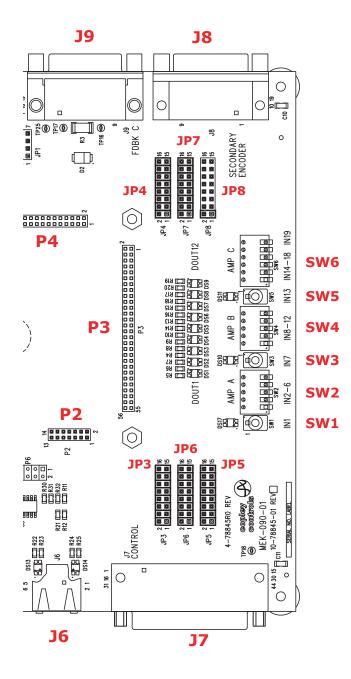
As delivered, all of these jumpers are installed as shown. If connecting to external devices that actively control the level of an input, it is desirable to disconnect the switch which could short the input to ground.

For example, if [IN1] is connected to an external device for the Enable function, then jumper JP5A should be removed to take the switch SW1 out of the circuit. The figure below shows these connections.

copley of controls

M3 3-Axis Module CANopen

DEVELOPMENT KIT CONNECTORS


The Development Kit mounts a single MP3 module and enables the user to test and operate the MP3 before it is mounted onto a PC board in the target system.

J11 AXIS	J10 A AXIS E	J9 B AXI	S C	FEEDB	ACK					J11	J10
PIN	SIGNAL	PI	N	SIGNAL		PIN	SIGNAL]	(
26	Signal Gnd	18	Sin	(-)		9	Enc X	1	(
25	Signal Gnd	17	+5	VENC		8	Enc /X	1		8 <u></u>	
24	N.C.	16	Sig	nal Gnd		7	Motemp *	1		FDBK A	Reference to the second
23	N.C.	15	Enc	:S (A) *	**	6	+5VENC]			JP1 [®]
22	N.C.	14	Enc	: /S (/A)	**	5	Signal Gnd				
21	Cos(+)	13	Enc	: A		4	Hall W		J1	MOT C	56 P 4
20	Cos(-)	12	Enc	: /A		3	Hall V				% <u>000000000000000000000000000000000000</u>
19	Sin(+)	11	Enc	B		2	Hall U				P4
		10	Enc	: /B		1	Frame Gnd				
to the Th	Motors with a pins 14 & 15 o e A & /A signa is shows the I ~J11,and the	of the feed Is which h Motemp si	dback c ave the gnals o	onnectors same fui n the axis	will t	e conne for enc			J2 J3	26 TP23 TP20 T 0 0 0 0 0 0	P1 ()
	Function	Axis A	Axis B	Axis C	Con	n					
		28	34	40				1			
	Motemp	IN6	IN12	IN18	P3			Λ			JP2
	Jumper	JP4-A	JP4-B	JP4-C			4	\sim	J4		8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
J1: AXIS C MOTOR J2: AXIS B MOTOR J2: AXIS A MOTOR J2: AXIS A MOTOR Connector, Euro, 4 Terminal, 5.08 mm											
Con	HV, AUX, and an		inal,	HV +5'	gnal +HV Gnd / Ext Sgnd Gnd / Aux	1 2 3 4 5					

DEVELOPMENT KIT CONNECTORS

SW 1,3,5: ENABLE INPUTS

Axis ->	Axis A	Axis B	Axis C
Enable	SW1	SW3	SW5
Input	[IN1]	[IN7]	[IN13]
Jumper	JP5-A	JP5-G	JP6-E

DIP SWITCH INPUT CONNECTIONS

SW# / Axis ->	SW2 / A		SW4 / B		SW6 / C	
1	[IN2]	JP5-B	[IN8]	JP5-H	[IN14]	JP6-F
2	[IN3]	JP5-C	[IN9]	JP6-A	[IN15]	JP6-G
3	[IN4]	JP5-D	[IN10]	JP6-B	[IN16]	JP6-H
4	[IN5]	JP5-E	[IN11]	JP6-C	[IN17]	JP3-A
5	[IN6]	JP5-F	[IN12]	JP6-D	[IN18]	JP3-B
6	SW6 is not on these DIP switches [IN19] JP3-C					JP3-C

J8 SECONDARY FEEDBACK

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
26	Ax-C Enc B	18	Ax-C /B	9	Ax-C Enc X
25	Ax-C Enc A	17	Ax-C /A	8	Ax-C Enc /X
24	Signal Gnd	16	Ax-C +5V	7	Signal Gnd
23	Ax-B Enc B	15	Ax-B Enc /B	6	Ax-B Enc /X
22	Ax-B Enc A	14	Ax-B Enc /A	5	Ax-B Enc X
21	Signal Gnd	13	Ax-B +5V	4	Signal Gnd
20	Ax-A Enc B	12	Ax-A Enc /B	3	Ax-A Enc /X
19	Ax-A Enc A	11	Ax-A Enc /A	2	Ax-A Enc X
		10	Ax-A +5V	1	Frame Gnd

J7: CONTROL

PIN	SIGNAL	PIN	SIGNAL		
15	Signal Gnd	30	Ax-A +5V	PIN	SIGNAL
14	N.C.	29	Ax-C +5V	44	Ax-B +5V
13	[OUT8]	28	[OUT7]	43	[OUT9]
12	[OUT5]	27	[OUT4]	42	[OUT6]
11	[OUT2]	26	[OUT1]	41	[OUT3]
10	Signal Gnd	25	[IN19]	40	Signal Gnd
9	[IN18]	24	[IN16]	39	[IN17]
8	[IN15]	23	[IN13]	38	[IN14]
7	[IN12]	22	[IN10]	37	[IN11]
6	[IN9]	21	[IN7]	36	[IN8]
5	[IN6]	20	[IN4]	35	[IN5]
4	[IN3]	19	[IN1]	34	[IN2]
3	Ax-C Ref(-)	18	Ax-B Ref(-)	33	Signal Gnd
2	Ax-C Ref(+)	17	Ax-B Ref(+)	32	Ax-A Ref(-)
1	Frame Gnd	16	Signal Gnd	31	Ax-A Ref(+)

CANOPER

ORDERING INFORMATION

MASTER ORDERING GUIDE

MP3-090-10	Multinet Plus MP3 stepper drive, 5/10A, 14~90 Vdc
MPK-090-03	Development Kit for Multinet Plus MP3

	Qty	Ref	Name	Description	Manufacturer P/N
	1	J4	+HV & Aux	Connector, Euro, 6 Terminal, 5.08 mm	TE Buchanan: 796635-6
	3	J1~J3	Motor	Connector, Euro, 4 Terminal, 5.08 mm	TE Buchanan: 796635-4
	1	J7	Control	44 Pin Connector, High Density, D-Sub, Female, Solder Cup	Norcomp: 180-044-203L001
Connector Kit				44 Pin Connector Backshell	Norcomp: 979-025-020R121
for Development Kit MPK-CK-03	3	J9~J11 Feedback		26 Pin Connector, High Density, D-Sub, Male, Solder Cup	Norcomp: 180-026-103L001
	3			26 Pin Connector Backshell	Norcomp: 979-015-020R121
	1	J8 Secondary		26 Pin Connector, High Density, D-Sub, Female, Solder Cup	Norcomp: 180-026-203L001
	1		Feedback	26 Pin Connector Backshell	Norcomp: 979-015-020R121
SER-CK	1	J4	RS-232	Serial Cable Kit	

16-01568 Document Revision History

-	, ,				
Revision	Date	Remarks			
00	April 26, 2017	Preliminary version			
01	February 5, 2018	Corrections to pin numbering, JP9 detail added			

Note: Specifications subject to change without notice